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1|Introduction 

The main objective of sampling theory is to enhance the accuracy of estimating unknown population 

parameters for a study variable by utilizing auxiliary information. This approach is most effective when there 

is a strong correlation between the study variable and the auxiliary variable. A number of well-known 

techniques, including as ratio, product, and regression estimators, are used to estimate population parameters 
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  using auxiliary information. The ratio method of estimation, first introduced by Cochran [1], is particularly 

useful when the study variable exhibits a strong positive correlation with the auxiliary variable. When there is 

a significant negative relationship between the study and auxiliary variables, the product method of estimation 

is used which was initially used by Murthy [2]. 

Auxiliary information has been utilized to enhance the accuracy of parameter estimation, as discussed by [3]. 

When auxiliary information is available, the ratio method of estimation gives better accuracy, but only when 

the relationship between Y and X forms a straight line passing through the origin. If the regression line has a 

non-zero intercept, the ratio estimator becomes less accurate. In such cases, a regression-type estimator is a 

better choice because it takes the intercept into account and provides more precise results. A number of 

studies are conducted using auxiliary information as [4] introduces about ratio estimators that utilize auxiliary 

attribute information to estimate the population mean of a study variable. An almost unbiased estimator for 

population coefficient of variation using auxiliary information was developed by Singh et al. [5]. 

Several studies have been conducted on sampling with two auxiliary variables in classical statistics. In a study, 

Sharma and Singh [6] has proposed a new ratio type estimator using auxiliary information on two auxiliary 

variables based on Simple random sampling without replacement (SRSWOR). In a paper Abu-Dayyeh et al. 

[7] showed how to extend the two classes of estimators if more than two auxiliary variables are available. 

Kadilar and Cingi [8] utilizing the estimator of [7], and suggested about an estimator using two auxiliary 

variables in simple random sampling. Ratio cum product type exponential estimator was constructed by Singh 

et al. [9]. Singh et al. [10] suggested about the efficiency of dual to ratio-cum-product estimator in sample 

survey. An almost unbiased ratio and product type estimator in systematic sampling is developed by Singh 

and Singh [11]. 

Classical statistical approaches determine the population mean based on clear, unambiguous data values, 

particularly when auxiliary variables are accessible; however, these methods often struggle with real-world 

data that contains uncertainty, variability, or incomplete information, leading to less reliable estimates in 

practical applications. Classical estimators often struggle in practical applications due to their rigidity. In 

contrast, the rising field of neutrosophic estimators offers greater efficiency in dealing with uncertain or 

indeterminate data. 

The presence of uncertainty or indeterminacy in data leads to the development of neutrosophic statistics. 

Smarandache [12], developed neutrosophic logic as an extension of fuzzy logic, providing a more robust 

framework to handle uncertainty, ambiguity, and imprecision. By introducing an additional parameter for 

indeterminacy, it proves especially valuable when dealing with incomplete or unreliable data. A fuzzy concept 

refers to an idea that is uncertain or imprecise. The concept of fuzzy logic was introduced by Zadeh [13] and 

is widely applied in fields like artificial intelligence to manage uncertainty and imprecision effectively. The 

field of fuzzy statistics has evolved considerably, branching into areas like fuzzy regression analysis, fuzzy 

probability theory, forecasting using fuzzy time series. The scope also covers confidence interval estimation 

from imprecise data, operational research applications, hypothesis testing under fuzziness, and challenges 

with uncertain arrival or service rates. To tackle the oversight of indeterminacy in fuzzy statistics, neutrosophic 

statistics has emerged as a powerful alternative. It serves as an extension of both fuzzy and classical statistical 

models and offers a way to quantify the uncertainty present in imprecise data. The concept was originally 

proposed by Smarandache and has been widely discussed in subsequent literature, particularly in sources [14–

18]. The novelty of the neutrosophic framework is further highlighted in the works listed in [19–24]. 

This study concentrates on neutrosophic logic and statistics, especially in the context of neutrosophic statistics 

derived from neutrosophic sets or logic. Neutrosophic approaches are employed in situations where fuzzy or 

intuitionistic statistical techniques are insufficient to capture the indeterminate nature of uncertain or 

imprecise data. The neutrosophic ratio-type estimators for estimating the population mean introduces by 

Tahir and Khan [25]. In this article, [25] explores statistical estimation methods under uncertainty using 

neutrosophic approaches. An almost unbiased estimator for population mean is discussed by [26], using 

neutrosophic auxiliary information. A neutrosophic estimator that leverages the medians of two auxiliary 
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  variables to estimate the finite population mean more accurately is developed by Singh and Tiwari [27]. The 

estimation of finite population mean in case of neutrosophic ranked set sampling scheme is determines by 

Singh and Kumari [28]. 

In this paper, we have constructed two neutrosophic almost unbiased estimator for the estimation of 

neutrosophic finite population mean using two auxiliary variables under indeterminacy. The first estimator 

integrates ratio and product approaches with weighting coefficients ( 0Nα , 1Nα  and 2Nα ), to reduces bias and 

enhance precision. The second estimator combines ratio and exponential term with coefficients ( 0Nl , 1Nl and 

2Nl ). This work extends neutrosophic sampling theory, offering valid solutions for real-world applications 

with uncertain or imprecise measurements. 

2|Mathematical Notations and Methodology 

The neutrosophic observations are represented in form of N'Z '  which’ is expressed as N L U NZ Z Z I= + , where 

N L UI [I , I ]  and N L UZ [Z ,Z ] . Here, L'Z '  and U'Z '  represent the lower and upper bounds of the 

neutrosophic variable N'Z ' . The term N' I ' indicates the degree of indeterminacy in N'Z ' , taking values of 0  

to 1 . This formulation highlights that N'Z '  is defined in an interval form, meaning any subsequent 

calculations using N'Z '  will yield an interval value rather than a single-point result. 

Let UN be a neutrosophic finite population with NN units U1N, U2N ,U3N , … … . … … … UNN. This finite 

population's units are identifiable because each one has a unique label between 1 and N, and each unit's label 

is known. 

Let yN ∈ [yL, yU] and, xN ∈ [xL, xU], zN ∈ [zL, zU] represents the study variate and auxiliary variates respectively 

with values yiN and (xiN, ziN ) on the unit UiN (i = 1, 2, ..., N). Where xN and yN have a positive correlation 

and zN and yN have a negative correlation. We want to estimate the finite population mean 
N

N

N i

i 1N

1
Y Y

N =

= 

assuming that the population means of auxiliary variables NX  and NZ are known. Assume that a simple 

random sample of size Nn  is drawn without replacement from UN. 

The parameters for the population and sample are given as 

N

2 2

yN iN N

i 1N

1
S (Y Y )

(N 1) =

= −
−
  is the population mean square of the neutrosophic study variable NY . 

N

2 2

xN iN N

i 1N

1
S (X X )

(N 1) =

= −
−
  is the population mean square of the neutrosophic auxiliary variable NX . 

N

2 2
NzN iN

i 1N

1
S (Z Z )

(N 1) =

= −
−
  is the population mean square of the neutrosophic auxiliary variable NZ . 

N

xyN iN N iN N

i 1N

1
S (X X )(Y Y )

(N 1) =

= − −
−
  is the population covariance of the neutrosophic study and auxiliary 

variable NY  and NX . 

N

NyzN iN N iN

i 1N

1
S (Y Y )(Z Z )

(N 1) =

= − −
−
  is the population covariance of the neutrosophic study and auxiliary 

variable NY  and NZ . 

N

N NxzN iN iN

i 1N

1
S (X X )(Z Z )

(N 1) =

= − −
−
  is the population covariance of the neutrosophic auxiliary variables NX  

and NZ . 
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  n

2 2

yN iN N

i 1N

1
s (y y )

(n 1) =

= −
−
  is the sample mean square of the neutrosophic study variable Ny . 

n

2 2
NxN iN

i 1N

1
s (x x )

(n 1) =

= −
−
  is the sample mean square of the neutrosophic auxiliary variable Nx . 

From the above parameters defined a number of existing estimators as given bellow: 

The conventional sample mean estimator has been introduced in neutrosophic framework as 

The variance of the estimator 0N(t )  up to the first order approximation is given by 

In neutrosophic framework, the conventional ratio estimators RN(t )  for the population mean ( NY ) is defined 

as 

Bias and the Mean Square Errors (MSEs) of estimator RN(t )  are given by 

Motivated by Murthy [2] Product estimators PN(t )  in neutrosophic framework as 

Bias and the MSEs of the estimator PN(t )  are given by 

where, 
n

iNN

i 1N

1
y x

n =

=  , 
n

N iN

i 1N

1
x y

n =

=   and 
n

N iN

i 1N

1
z z

n =

=   are the sample means of neutrosophic variables

Ny , Nx  and Nz  respectively. 

Here, N N

N

1
γ (1 f )

n
= − , N NL, NUγ γ γ    , N

N

N

n
f

N
= , N NL, NUf f f    is known as sampling fraction. 

yN yNL yNUC C ,C     and xNC ,  xN xNL xNUC C ,C are the population coefficient of variations of neutrosophic 

study variable  N NL NUY Y ,Y  and neutrosophic auxiliary variables  N NL NUX X ,X . Coefficient of variation 

are defined as, 
yN

yN
N

S
C

Y
= , xN

xN
N

S
C

X
=  and zN

zN
N

S
C

Z
= . 

0N Nt y= , where,  0N 0L 0Ut t , t . (1) 

2 2

0N N yNV(t ) Y γ C .=  (2) 

N
NRN

N

y
t X

x

 
=  
 

, where, RN RNL, RNUt [t t ] . (3) 

2
NRN N xN yxN yN xNBias(t ) Y γ C ρ C C . = −   (4) 

2 2 2
NRN N yN xN yxN yN xNMSE(t ) Y γ C C 2ρ C C . = + −   (5) 

N
PN N

N

y
t z

Z

 
=  
 

, PN PNL, PNUt [t t ] . (6) 

NPN N yzN yN zNBias(t ) Y γ ρ C C ,=  (7) 

2 2 2
NPN N yN zN yzN yN zNMSE(t ) Y γ C C 2ρ C C , = + +   (8) 
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Nρ  is the correlation coefficient between NX  and NY . Where  xN xNL xNUS S ,S and 

yN yNL yNUS S ,S    are the 

standard deviation of auxiliary variable and study variable respectively. 
yxN yxNL yxNUS S ,S     is the population 

covariance of the study and auxiliary variable NY  and NX . 

Other parameter is defined as follows in case of neutrosophic population. 

Let us define sampling errors for both mean and variance of neutrosophic study and auxiliary variables as 

2.1|Adapted Existing Estimator 

Motivated by [29], we enhanced the ratio and product estimation methods and proposed the 'ratio-cum-

product estimator RPN(t )  for estimating the finite population mean in neutrosophic study as given 

Follows the study [30], we have introduced various ratio-cum-product estimators for estimating the finite 

population mean of study variable ( NY ) under neutrosophic framework. The estimator RRN(t )  represents the 

ratio-cum-ratio estimator given as 

Bias and the MSE of the estimator RRNt  are defined as 

Moreover, we have introduced the product cum product estimator PPN(t )  given as, 

Bias and MSE of the estimator PPN(t )  are defined as 

yxN yxL yxUρ ρ ,ρ   , yzN yzL yzUρ ρ ,ρ    and  xzN xzL xzUρ ρ ,ρ . 
 

NN
0N

N

y Y
e

Y

−
= , 

N N

1N
N

x X
e

X

−
= , 

N N

2N
N

(z Z )
e

Z

−
= , 

N 0NNy Y (1 e )= + , N N 1Nx X (1 e )= + , ( )N N 2Nz Z 1 e ,= +  

0N 1N 2NE(e ) E(e ) E(e ) 0= = = , 
2 2

0N N yNE(e ) γ C= , 2 2

1N N xNE(e ) γ C= , 2 2

2N N zNE(e ) γ C= . 

 

N N

RPN N
N N

X z
t y

x Z

  
=   

  

, where, RPN RPL RPUt [t , t ] . (9) 

2
NRPN N xN yxN yN xN yzN yN zN xzN xN zNBias(t ) Y γ C ρ C C ρ C C ρ C C . = − − +   (10) 

2 2 2 2
NRPN N yN xN zN yxN yN xN yzN yN zN xzN xN zNMSE(t ) Y γ C C C 2ρ C C 2ρ C C 2ρ C C . = + + − + −   (11) 

N N

RRN N
N N

X Z
t y

x z

  
=   

  
, where, RRN RRL RRUt [t , t ] . (12) 

2 2
NRRN N yN zN yxN yN xN yzN yN zN xzN xN zNBias(t ) Y γ C C ρ C C ρ C C ρ C C . = + − − +   (13) 

2 2 2 2
NRRN N yN xN zN yxN yN xN yzN yN zN xzN xN zNMSE(t ) Y γ C C C 2ρ C C 2ρ C C 2ρ C C . = + + − − +   (14) 

N N

PPN N
N N

x z
t y

X Z

  
=   

  
, PPN PPL PPUt [t , t ] . (15) 
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3|Proposed Almost Unbiased Estimator–I 

Let, 
0N Nt y= , 

N N

1N N
N N

X Z
t y

x z

  
=     

  

 and 
N N

2N N
N N

x z
t y

X Z

  
=     

  
 are the three estimators. 

Such that 0Nt , 1Nt  and 2Nt ∈ L , where L  is the set of all possible estimators for estimating the finite 

population mean. 

By definition, the L is a linear variety [31], [32] if, 

In this context, iNα (i 0,1,2)=  stands for statistical constants, and R denotes the collection of real numbers. 

 Table 1. Members of the proposed family of estimators hN
(t ) . 

 

 

 

 

 

 

  

To determine the bias and Mean Squared Error (MSE) of the estimator hN(t ) , we express estimator hN(t )  in 

terms of the error component as follows: 

Expanding the right-hand side of the Eq. (21) and keeping terms up to the second order of Ne 's , we obtain 

By subtracting NY  and then taking the expectation on both sides, we obtain the bias of the estimator hN(t )  

up to the first-order approximation as 

NPPN N yxN yN xN yzN yN zN xzN xN zNBias(t ) Y γ ρ C C ρ C C ρ C C . = + +   (16) 

2 2 2 2
NPPN N yN xN zN yxN yN xN yzN yN zN xzN xN zNMSE(t ) Y γ C C C 2ρ C C 2ρ C C 2ρ C C . = + + + + +   (17) 

2

hN iN iN

i 0

t α t
=

= ∈ L , hN hL hUt [t , t ].  (18) 

N N N N

hN 0N 1N 2NN N N
N N N N

X Z x z
t α y α y α y .

x z X Z

     
= + +     

     
 (19) 

For 
2

iN

i 0

α 1
=

= , iNα ∈ R. (20) 

0N
α  

1N
α  2N

α  Estimators 

1 0 0 
N

y  

0 1 0   
  
  
  

N N

N

N N

X Z
y

x z
 

0 0 1   
  
  
  

N N

N

N N

x z
y

X Z
 

( ) ( ) ( ) ( )( )
− − = + + + + + + +

  

1 1

N
hN 0N 0N 1N 1N 2N 1N 1N 2N
t Y 1 e α α 1 e 1 e α 1 e 1 e .  (21) 

( ) ( ) ( )
( ) ( ) ( )

 + + − + − + −
 =
+ − + + + + 
  

0N 2N 1N 1N 2N 1N 0N 1N 2N 1N 2N

N 2 2
hN

2N 1N 0N 2N 2N 1N 1N 2N 1N 1N 2N

1 e α α e α α e e α α e
t Y .α α e e α α e e α e e  (22) 
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where 

From Eq. (22), we have 

Squaring both sides of the Eq. (25) and then taking the expectation, we obtain the MSE of the estimator hN(t )  

up to the first-order approximation as 

Which is minimum when 

After substituting NH  in the Eq. (26), we find the minimum MSE of the estimator hN(t )  as 

From Eq. (24) and Eq. (27), We have 

Since we have only two equations for three unknowns, it is not possible to uniquely determine iNα 's

(i 0,1,2).=  To find the values of iNα 's  we introduce a linear restriction as 

where, iNB(t )  denotes the bias of the ith estimator. 

The Eq. (20), Eq. (29) and Eq. (31) can be expressed in matrix form as 

( ) + +
 = + + + 
  

2 2

1N xN zN N yxN yN xN

N
hN N

N yzN yN zN 1N 2N xzN xN zN

α C C H ρ C C
Bias(t ) Y γ ,H ρ C C (α α )ρ C C

 (23) 

= −
N 2N 1N

H (α α ).  (24) 

( )  − + + hN 0N N 1N N 2N
t Y e H e H e .  (25) 

 + + +
 = + + 
  

2 2 2 2 2
2 yN N xN N zN

2N
hN N

N yxN yN xN N yzN yN zN N xzN xN zN

C H C H C
MSE(t ) Y γ .2H ρ C C 2H ρ C C 2H ρ C C  (26) 

 +
 = −
 + + 

yxN yN xN yzN yN zN

N 2 2

xN zN xzN xN zN

ρ C C ρ C C
H .

C C 2ρ C C
 (27) 

 + + +
 = + + 
  

2 2 2 2 2
2 yN N xN N zN

2N
hN N

N yxN yN xN N yzN yN zN N xzN xN zN

C H C H C
Min.MSE(t ) Y γ .2H ρ C C 2H ρ C C 2H ρ C C  (28) 

( )
( )
− +

− = =
+ +

yxN yN xN yzN yN zN

2N 1N N 2 2

xN zN xzN xN zN

(ρ C C ρ C C )
α α H .

C C 2ρ C C
 (29) 

=

=
2

iN iN
i 0

α B(t ) 0,  (30) 

+ + =
0N 0N 1N 1N 2N 2N

α B(t ) α B(t ) α B(t ) 0,  (31) 

     
     
     − =
     
     
          

0N

1N N

1N 2N 2N

1 1 1 α 1

0 1 1 α H .

0 B(t ) B(t ) α 0

 (32) 
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  From the system of Eq. (32), we get the unique values of the iNα 's  as 

Such that 

Use of these iNα 's (i 0,1,2)= remove the bias up to terms of order 
1O(n )−

. 

4|Proposed Almost Unbiased Estimator-II 

In this section, we introduce another almost unbiased estimator h1N(t )  for the finite population mean, utilizing 

two auxiliary variables under neutrosophic framework. For this purpose, we consider three estimators, 0Nm ,  

1Nm , and 2Nm , which are defined as 

Bias and the variance of the estimator 0N(m )  is defined as 

Inspired by [33], the ratio-cum-product estimator within neutrosophic structure, the estimator RPN(t )  is given 

as 

The bias and MSE for the ratio-cum-product estimator 1N(m )  are given by 

Following the paper [10], the neutrosophic exponential ratio-cum-product-type estimator eRPNt = 2Nm  has 

been introduced as 

The expressions for bias and MSE of the estimator 2N(m )  are provided as 

+ + −
=

+

1N 2N N 2N N 1N
0N

1N 2N

B(t ) B(t ) H B(t ) H B(t )
α .

B(t ) B(t )
 (33) 

 
= −  + 

N 2N
1N

1N 2N

H B(t )
α .

B(t ) B(t )
 (34) 

 
=   + 

N 1N
2N

1N 2N

H B(t )
α .

B(t ) B(t )
 (35) 

+ + =
0N 1N 2N

α α α 1.  (36) 

= =
N0N 0N

m t y .  (37) 

=
0N

Bias(m ) 0.  (38) 

=
2

2
N

0N N N
Var(m ) Y γ C .  (39) 

  
= =   

  
  

N N

N1N RPN
N N

X z
m t y .

x Z
 (40) 

 = − − +
 

2
N

1N N xN yxN yN xN yzN yN zN xzN xN zN
Bias(m ) Y γ C ρ C C ρ C C ρ C C .  (41) 

 = + + − + −
 

2
2 2 2

N
1N N yN xN zN yxN yN xN yzN yN zN xzN xN zN

MSE(m ) Y γ C C C 2ρ C C 2ρ C C 2ρ C C .  (42) 

   − −
=    

   + +   

N N N N

N2N
N N N N

X x z Z
m y exp exp .

X x z Z
 (43) 
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Let 
0N Nm y= , 

N N

1N N
N N

X z
m y

x Z

  
=     

  

 and 
N N N N

2N N
N N N N

X x z Z
m y exp exp

X x z Z

   − −
=       + +   

 are the three estimators 

expressed. The estimator h1N(t ) has been introduced by integrating these estimators. 

Where, 0Nm , 1Nm , and 2Nm    L, UL(L L )  are elements of L , which represents the set of all possible 

estimators for the finite population mean. 

By definition, the L is a linear variety [31], [32] if, 

where iNl (i 0,1,2)= represents statistical constants, and R denotes the set of real numbers. 

 Table 2. Members of the proposed family of estimators h1
(t ) . 

 

 

 

 

 

 

To determine the bias and MSE of the estimator h1N(t ) , we express h1N(t )  in error terms as 

Expanding the right-hand side of the Eq. (49) and keeping terms up to the second power of 0Ne ’s, we get 

 
= − − + − 

 

2 2
N

2N N xN zN yxN yN xN yzN yN zN xzN xN zN

3 1 1 1 1
Bias(m ) Y γ * C * C ρ C C ρ C C ρ C C .

8 4 4 2 4
 (44) 

 
+ + − 

=  
+ − 
  

2 2 2
2 yN xN zN yxN yN xN

N
2N N

yzN yN zN xzN xN zN

1 1
C C C 2ρ C C

4 4MSE(m ) Y γ .1
2ρ C C ρ C C

2

 (45) 

=

=
2

h1N iN iN
i 0

t l m ∈ 
L U

L(L ,L ),  (46) 

      − −
= + +      

      + +      

N N N N N N

N N Nh1N 0N 1N 2N
N N N N N N

X z X x z Z
t l y l y l y exp exp ,

x Z X x z Z
 (47) 

For 
=

=
2

iN
i 0

l 1 , 
iN
l ∈ R, (48) 

0N
l  

1N
l  

2N
l  Estimators 

1 0 0 
N

y  

0 1 0   
  
  
  

N N

N

N N

X z
y

x Z
 

0 0 1    − −
   
   + +   

N N N N

N

N N N N

X x z Z
y exp exp

X x z Z
 

( )
( ) ( )

( ) ( )

−

− −

 + + + +
 

= +     − + +        

1

0N 1N 1N 2N

1 1N
h1N 0N

2N 1N 1N 2N 2N

l l 1 e 1 e
t Y 1 e .

l exp e 2 e exp e 2 e
 (49) 

      
+ − + + + − +           

      =       + + − + + + −       
     

2N 2N 2N
0N 1N 1N 1N 2N 1N 0N 1N

N
h1N

2 22N
1N 0N 2N 1N 2N 1N 2N 1N 2N 1N 2N 2N

α α α
1 e α e α e α e e

2 2 2t Y .α 1 3 1
α e e α α e e α α e α e

2 4 8 4

 (50) 
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Subtracting NY  and then taking the expectation on both sides, we obtain the bias of the estimator h1N(t ) up 

to the first-order approximation as 

or 

where, 

From Eq. (50), we have 

 

Squaring both sides of Eq. (54) and then taking the expectation, we obtain the MSE of the estimator h1N(t )

up to the first-order approximation as 

Which is minimum when 

Substituting this value into the Eq. (55), we obtain the minimum MSE of the estimator h1N(t ) as 

Based on the Eq. (53) and Eq. (56), we have 

Since we have only two equations for three unknowns, it is not possible to uniquely determine iNl 's (i 0,1,2)=

. To find the values of iNl 's , we introduce a linear restriction as 

 + +
 

=  − − − −
 
 

2

1N xN 1N yzN yN zN

N 2 2h1N N
2N xzN xN zN 1N yxN yN xN 1N xzN xN zN 2N xN 2N zN

H C H ρ C C

Bias(t ) Y γ ,1 1 1
l ρ C C H ρ C C H ρ C C l C l C

4 8 4

 (51) 

  
− + +  

  =  
 − − − 
   

2

1N 2N xN 1N yzN yN zN

N
h1N N

2

2N 1N xzN xN zN 1N yxN yN xN 2N zN

1
H l C H ρ C C

8Bias(t ) Y γ ,1 1
l H ρ C C H ρ C C l C

4 4

 (52) 

= +
1N 1N 2N

1
H (l l ).

2
 (53) 

( )  − + − N
h1N 0N 1N 2N 1N 1N
t Y e H e H e .  (54) 

 + + −
 = + − 
  

2 2 2 2 2
2 yN 1N xN 1N zN 1N yxN yN xN

2N
h1N N

1N yzN yN zN 1N xzN xN zN

C H C H C 2H ρ C C
MSE(t ) Y γ .2H ρ C C 2H ρ C C  (55) 

 −
 =
 + − 

yxN yN xN yzN yN zN

1N 2 2

xN zN xzN xN zN

ρ C C ρ C C
H .

C C 2ρ C C
 (56) 

 + + −
 = + − 
  

2 2 2 2 2
2 yN 1N xN 1N zN 1N yxN yN xN

2N
h1N N

1N yzN yN zN 1N xzN xN zN

C H C H C 2H ρ C C
Min.MSE(t ) Y γ .2H ρ C C 2H ρ C C  (57) 

1 1 2

1
(l )

2
N N NH l= +

 −
 =
 + − 

yxN yN xN yzN yN zN

2 2

xN zN xzN xN zN

ρ C C ρ C C
.

C C 2ρ C C
 (58) 

=

=
2

iN iN
i 0

l B(m ) 0,  (59) 
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where iNB(m )  denotes the bias of the ith estimator. 

The Eq. (48), Eq. (58) and Eq. (60) can be expressed in matrix form as 

Solving the system of Eq. (61), we get the unique values of iNl 's as 

Such that 

Use of these iNl 's (i 0,1,2)= remove the bias up to terms of order 
1O(n )−

. 

5|Empirical Study 

 In this study, we have considered the dataset from [34], where the neutrosophic study variable ( NY ) 

corresponds to rice yield, and the neutrosophic auxiliary variables consist of rain sowing ( 1NX ) and rain 

ripening ( 2NX ) respectively. The dataset is used to analyze the performance of different estimators concerning 

the neutrosophic study variable N NL NUy [y , y ] . 

 Table 3. Descriptive statistics of the given parameter for population 1. 

 

 

 

 

 

 

 

 

+ + =
0N 0N 1N 1N 2N 2N
l B(m ) l B(m ) l B(m ) 0,  (60) 

    
    
     =
    
    

          

0N

1N 1N

1N 2N
2N

1 1 1
l 1

1
0 1 l H .

20 B(m ) B(m ) l 0

 (61) 

− − +

=

−

2N 1N 1N 2N 1N 1N

0N

2N 1N

1
B(m ) B(m ) H B(m ) H B(m )

2l .
1

B(m ) B(m )
2

 (62) 

=

−

1N 2N
1N

2N 1N

H B(m )
l .

1
B(m ) B(m )

2

 
(63) 

−
=

−

1N 1N
2N

2N 1N

H B(m )
l .

1
B(m ) B(m )

2

 
(64) 

+ + =
0N 1N 2N
l l l 1.  (62) 

Population 1 

N
N  = [9, 9] 

N
n  = [4, 4] 

f  = 138889, 0.138889] 

NY  = [3.92222, 18.4333] 

NX  = [11.58889, 35.65556] 

NZ  = [40.58889, 93.73333] 

YN
C  = [0.5664, 0.1192] 

XN
C  = [0.9258, 0.7679] 

ZN
C  = [0.7927, 0.8014] 

YXN
ρ = [0.530908, -0.47399] 

YZN
ρ  = [-0.05753, -0.66775] 

XZN
ρ  = [0.428153, 0.73633] 
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  Population 2 

In this study, data from Aslam [34] has been considered, where the neutrosophic study variable ( NY ) 

corresponds to rice yield, and the two neutrosophic auxiliary variables are temperature ripening ( 1NX ) and 

rain ripening ( 2NX ). This data is used to analyze the efficiency of various estimators for the neutrosophic 

study variable N NL NUy [y , y ] . 

Table 4. Descriptive statistics of the given parameter for population 2. 

 

 

 

 

 

 

 

 

Table 5. MSEs and PREs value of existing and proposed estimators for population 1. 

 

 

 

 

 

 

 

 

 

 

Table 6. MSEs and PREs value of existing and proposed estimators for population 2. 

 

 

 

 

 

 

 

 

 

 

Population 2 

N
N = [9, 9] 

N
n  = [4, 4] 

f  = [0.138889, 0.138889] 

NY  = [3.92222, 18.4333] 

NX  = [24.4, 36.6222] 

NZ = [40.5889, 93.73333] 

YN
C  = [0.5664, 0.1192] 

XN
C  = [0.0448, 0.0511] 

ZN
C  = [0.7927, 0.8014] 

YXN
ρ  = [-0.2086, 0.2412] 

YZN
ρ  = [-0.0575, -0.6677] 

XZN
ρ  = [-0.7674, -0.7445] 

Estimator MSE 
N
I  PRE 

0N
t  [0.6855, 0.6705] [0, 0.0218] [100, 100] 

RN
t  [1.32711, 32.5937] [0, 0.9593] [51.6495, 2.0573] 

PN
t  

[3.7064, 24.4037] [0, 0.8481] [18.4936, 2.7477] 

RRN
t  [4.1228, 111.6928] [0, 0.9631] [16.6258, 0.6003] 

PPN
t  [6.2814, 91.4614] [0, 0.9313] [10.9125, 0.7331] 

RPN
t  

[1.2166, 14.1130] [0, 0.9138] [56.3406, 4.7513] 

hN
Min.MSE(t )  [0.6210, 0.4170] [0, 0.3284] [110.3826, 160.7924] 

h1N
Min.MSE(t )  [0.4547, 0.6102] [0, 0.2548] [150.7426, 109.8850] 

Estimator MSE 
N
I  PRE 

0N
t  [0.6855, 0.6705] [0, 0.0217] [100, 100] 

RN
t  [0.7124, 0.6551] [0, 0.0804] [96.2228, 104.6318] 

PN
t  

[1.9177, 249594] [0, 0.9232] [35.7428, 2.7462] 

RRN
t  [2.0488, 34.1067] [0, 0.9399] [33.4558, 2.0097] 

PPN
t  

[1.7829, 22.3436] [0, 0.9202] [38.4449, 3.0677] 

RPN
t  

[2.0611, 27.8216] [0, 0.0.9259] [33.2566, 2.4637] 

hN
Min.MSE(t )  [0.6819, 0.3567] [0, 0.4769] [100.5266, 192.1688] 

h1N
Min.MSE(t )  [0.6820, 0.2979] [0, 0.5632] [100.5020, 230.0732] 
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  Table 7. Scalar values shown in this table for this it reduces the 

bias of the proposed estimator hN
(t ) . 

 

 

 

 

 

 

Table 8. Scalar values shown in this table for this it reduces the 

bias of the proposed estimator h1N
(t ) . 

 

 

 

 

 

  

 

6|Results and Discussion 

The Table 5 presents a neutrosophic evaluation of various estimators, incorporating MSE, indeterminacy ( NI

), and Percentage Relative Efficiency (PRE) as interval-valued metrics to account for uncertainty and 

variability. The estimators h1N(t ) and hN(t )  emerge as the top performers, exhibiting low value of MSE ranges 

[0.4547, 0.6102] and [0.6210, 0.4170], respectively, along with high accuracy. Their high PRE ranges 

[150.7426, 109.8850] and [110.3826, 160.7924] further emphasize their strong efficiency. Additionally, their 

moderate indeterminacy ranges [0, 0.2548] and [0, 0.3284] suggest that they remain reliable even under 

uncertainty, making the better choices for precision-driven applications. 

In a similar way, Table 6 shows that estimators hN(t )  and h1N(t )  perform the best, with PRE values [100.5266, 

192.16188] and [100.5020, 230.0732], it defines about efficiency of the estimators. Their indeterminacy N(I )  

values are [0, 0.4769] and [0, 0.5632] suggest that they stay reliable even in uncertain scenarios. The Table 7 

presents the scalars values used in estimators by which it makes linear restriction of the estimators hNt . This 

value reduces the bias of the proposed estimators. Similarly, the Table 8 also mention about the constant 

neutrosophic values in case of proposed estimators h1N(t )  make this estimator linear and applying these values 

reduces the bias of the proposed estimator. 

7|Conclusion 

This paper presents an almost unbiased estimator using two auxiliary variables for estimating finite population 

mean under neutrosophic framework. In this study, we have found that estimator h1N(t )  and hN(t )  are most 

efficient estimator comparison than all other existing estimator with low MSE and high PRE values. Using 

first order of approximation, we have derived Bias and MSE term for the proposed estimators. We have also 

mentioned the scalars values for both the estimators. It makes the estimator linear and reduces their bias. 

Scalars Population 1 Population 2 

0N
α  [1.0336, 0.9721] [0.9389, 0.8600] 

1N
α  [0.0429, -0.0111] [0.0035, 0.0166] 

2N
α  [-0.0766, 0.0390] [0.0575, 0.1234] 

N
H

2N
α

1N
α=( - ) [-0.1195, 0.0501] [0.0540, 0.1067] 

Scalars Population 1 Population 2 

0N
l  [0.2801, 0.9098] [0.9692, 0.9164] 

1N
l  [-0.0099, 0.0351] [0.0292, 0.1013] 

2N
l  [0.7298, 0.0552] [0.0016, -0.0177] 

  
= +   

  
1N 1N 2N

1
H l l

2
 

[0.3550, 0.0627] [0.0300, 0.0924] 
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  For the practical application, we have used agricultural data set. We have found that the neutrosophic 

estimators is better than classical estimators when data shows indeterminacy. Hence in this case, the proposed 

neutrosophic estimators are better for the indeterminate data set. 
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