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1|Introduction    

A wide variety of detailed numerical systems have been proposed to represent and analyze frameworks 

affected by uncertainty, ambiguity, and indeterminacy—essential traits found in areas such as engineering, 

economics, social sciences, and medical diagnostics. Foundational concepts, such as fuzzy set theory 
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Abstract 

Soft set theory, recognized for its mathematical precision and algebraic capabilities, provides a robust framework for 

addressing uncertainty, ambiguity, and variability influenced by parameters. This research introduces a novel binary 

operation, known as the soft symmetric difference complement-union product, defined for soft sets with parameter 

domains that exhibit a group-theoretic structure. Based on a solid axiomatic foundation, this operation is 

demonstrated to satisfy key algebraic properties, including closure, associativity, commutativity, and idempotency, 

while also being consistent with broader notions of soft equality and subset relationships.  It is obtained that the 

proposed product is a noncommutative semigroup in the collection of soft sets with a fixed parameter set. The study 

provides an in-depth analysis of the operation's features concerning identity and absorbing elements, as well as its 

interactions with null and absolute soft sets, all within the framework of group-parameterized domains. The findings 

suggest that this operation establishes a coherent and structurally robust algebraic system, thereby enhancing the 

algebraic framework of soft set theory. Furthermore, this research lays the groundwork for the development of a 

generalized soft group theory, where soft sets indexed by group-based parameters exhibit classical group behaviors 

through abstract soft operations. The operation's full integration within soft inclusion hierarchies and its compatibility 

with generalized soft equalities highlight its theoretical importance and broaden its potential applications in formal 

decision-making and algebraic modeling under uncertainty.  
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  introduced by Zadeh [1] and traditional probabilistic models, offer initial tools for tackling these challenges; 

however, they often encounter epistemological and mathematical constraints. For instance, fuzzy set theory 

relies on the subjective assignment of membership grades. In contrast, probabilistic approaches require well-

defined distributions and repeatable experiments—conditions that are often lacking in real-world, ambiguous 

scenarios. To overcome these challenges, Molodtsov [2] introduced soft set theory, a parameter-driven and 

logarithmically adaptable framework that does not rely on probabilistic or fuzzy assumptions. Initial 

operational definitions by Maji et al. [3] were later refined by Pei and Miao [4] from an information-theoretic 

perspective, thereby enhancing their relevance in social and multivalued systems. This groundwork was 

further advanced by Ali et al. [5], who introduced limited and extended operations, greatly enhancing the 

representational and  

mathematical versatility of soft sets. Numerous subsequent studies [6–26] have progressed the field by 

clarifying definitions, proposing new binary operations, and formalizing generalized soft equivalences. 

In recent years, the mathematical framework of soft set theory has undergone significant expansion, as 

evidenced by various initiatives aimed at developing coherent and extensible parallel operations. These 

developments have concentrated on generalizing the core concepts of soft subsethood and equivalence. 

Significant contributions from Qin and Hong [27] laid the foundation for broader theoretical models, which 

were later refined by Jun and Yang [28] and Liu et al. [29] through the creation of J-soft and L-soft equivalence 

relations. Feng and Li [30] further advanced the theory by classifying soft subsets under L-equality and 

demonstrating that specific remainder structures fulfill essential semigroup properties, such as associativity, 

commutativity, and distributivity. More recent generalizations—such as g-soft, gf-soft, and T-soft 

equivalences—have been introduced by Abbas et al. [31], [32] and Al-shami [33], and Al-shami and El-Shafei 

[34], incorporating congruence-based and lattice-theoretic approaches into the mathematical study of soft 

sets. A breakthrough was achieved by Çağman and Enginoğlu [35], whose foundational modification 

addressed key inconsistencies and established a coherent and mathematically robust basis for further 

theoretical developments. This strengthened theoretical foundation has enabled the systematic incorporation 

of soft set operations into classical mathematical frameworks. The concept of the soft intersection product 

was first introduced for rings [36], semigroups [37], and groups [38], forming the basis for the development 

of soft union ring, semigroup, and group theories. Similarly, the soft intersection product was defined for 

groups [39], semigroups [40], and rings [41], with corresponding algebraic theories subsequently developed. 

Due to inherent differences among these algebraic structures, the definitions and properties of these products 

exhibit structural variations. In particular, the presence of a unit element and inverses in groups imparts unique 

characteristics to the group-based definitions. 

Building on this groundwork, the research presents a novel binary operation called the soft symmetric 

difference complement-union product, which is defined over soft sets with parameter domains influenced by 

group-theoretic concepts. This operation is formulated within a strictly axiomatic framework and undergoes 

extensive algebraic examination. Key properties, such as closure, associativity, commutativity, and 

idempotency, are rigorously proven, along with an investigation into their relationships with identity elements, 

null and absolute soft sets, and absorbing elements. Additionally, the operation is shown to be entirely 

compatible with generalized concepts of soft subsethood and soft equality, integrating smoothly with the 

existing algebraic framework of soft set theory. To assess its theoretical significance and structural role, a 

comprehensive comparative analysis is conducted against established soft set operations, concentrating on its 

behavior within layered inclusion hierarchies. It is obtained that the proposed product is a noncommutative 

semigroup in the collection of soft sets with a fixed parameter set. By abstracting group-theoretic axioms into 

parameter-dependent soft structures, this operation establishes a foundation for a generalized soft group 

theory. In this algebraic system, soft sets indexed by group-structured parameters mimic classical group 

behavior through formally defined operations. Consequently, this work not only introduces a notable 

algebraic advancement but also creates a solid theoretical basis for applying soft set theory in areas that require 

formal management of uncertainty, abstract algebraic representation, and multi-criteria decision-making 

frameworks. Manuscript structure: Section 2 outlines the essential algebraic foundations and formal 
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  definitions that support the theoretical framework. Section 3 presents the soft symmetric difference 

complement-union product and thoroughly explores its related algebraic theory. Finally, Section 4 

summarizes the key findings and suggests possible avenues for further development of soft algebra in systems 

that tackle uncertainty. 

2|Preliminaries 

Molodtsov's early work on soft set theory introduced a parameter-based method for modeling uncertainty, 

but it lacked the required algebraic rigor for integration into abstract algebraic systems. Çağman and 

Enginoğlu [35] addressed this limitation through an axiomatic reconstruction that provided a solid and 

logically coherent foundation. The present research relies entirely on this improved framework, which 

underpins all definitions, operations, and algebraic structures discussed in this study. 

Definition 1 ([35]). Let E be a parameter set, U be a universal set, P(U) be the power set of U, and ℋ ⊆ E. 

Then, the soft set ℑℋ over U is a function such that ℑℋ: E → P(U), where for all w ∉ ℋ, ℑℋ(w) = ∅. That is 

ℑℋ = {(w, ℑℋ(w)):w ∈ E}. 

From now on, the soft set over U is abbreviated by 𝒮𝒮. 

Definition 2 ([35]). Let ℑℋ be an 𝒮𝒮. If ℑℋ(w) = ∅ for all w ∈ E, then ℑℋ is called a null ЅЅ and indicated 

by ∅E, and if ℑℋ(w) = U, for all w ∈ E, then ℑℋ is called an absolute ЅЅ and indicated by UE. 

Definition 3 ([35]). Let ℑℋ and ℘ℵ be two 𝒮𝒮s. If ℑℋ(w) ⊆ ℘ℵ(w), for all w ∈ E, then ℑℋ is a soft subset 

of ℘ℵ and indicated by ℑℋ ⊆̃ ℘ℵ. If ℑℋ(w) = ℘ℵ(w), for all w ∈ E, then ℑℋ is called soft equal to ℘ℵ, and 

denoted by ℑℋ = ℘ℵ. 

Definition 4 ([35]). Let fℋ be an 𝒮𝒮. Then, the complement of fℋ denoted by fℋ
c, is defined by the soft set 

fℋ
c: E → P(U) such that fℋ

c(e) = U\fℋ(e) = (fℋ(e))
′
, for all e ∈ E. 

Definition 5 ([42]). Let ℑK and ℘ℵ be two 𝒮𝒮s. Then, ℑK is called a soft S-subset of ℘ℵ, denoted by ℑK ⊆̃S ℘ℵ 

if for all w ∈ E, ℑK(w) = ℳ and ℘ℵ(w) = 𝒟, where ℳ and 𝒟 are two fixed sets and ℳ ⊆ 𝒟. Moreover, two 

ЅЅs ℑK and ℘ℵ are said to be soft S-equal, denoted by ℑK =S ℘ℵ, if ℑK ⊆̃S ℘ℵ and ℘ℵ ⊆̃S ℑK. 

It is obvious that if ℑK =S ℘ℵ, then ℑK and ℘ℵ are the same constant functions, that is, for all w ∈ E, ℑK(w)= 

℘ℵ(w) = ℳ, where ℳ is a fixed set. 

Definition 6 ([42]). Let ℑK and ℘ℵ be two 𝒮𝒮s. Then, ℑK is called a soft A-subset of ℘ℵ, denoted by 

ℑK ⊆̃A ℘ℵ, if, for each 𝒶,𝒷 ∈ E, ℑK(𝒶) ⊆ ℘ℵ(𝒷). 

Definition 7 ([42]). Let ℑK and ℘ℵ be two 𝒮𝒮s. Then, ℑK is called a soft S-complement of ℘ℵ, denoted by 

ℑK =S (℘ℵ)
c, if, for all w ∈ E, ℑK(w) = ℳ and ℘ℵ(w) = 𝒟, where ℳ and 𝒟 are two fixed sets and ℳ = 𝒟′. 

Here, 𝒟′ = U\𝒟. 

For additional information on ЅЅs, we refer to [43-59]. 

3|Soft Symmetric Difference Complement-Union Product of Groups 

This section presents a comprehensive algebraic analysis of the soft symmetric difference complement–union 

product, a newly introduced binary operation on soft sets derived from group-theoretically organized 

parameter domains. The study is conducted within a rigorous axiomatic framework, highlighting the essential 

characteristics of the operation—closure, associativity, commutativity, and idempotency—which confirm its 

role as an internal operation in soft set algebra. Furthermore, the operation is linked to generalized soft 

subsethood and soft equality, which are vital for defining morphisms and structuring algebraic substructures. 

The discussion particularly emphasizes the operation's position within stratified inclusion lattices, ensuring its 

structural soundness and seamless integration into the broader algebraic framework of soft set theory. It is 
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  obtained that the proposed product is a noncommutative semigroup in the collection of soft sets with a fixed 

parameter set. 

From now on, let G be a group, and SG(U) denotes the collection of all 𝒮𝒮s over U, whose parameter sets are 

G; that is, each element of SG(U) is an 𝒮𝒮 parameterized by G. Moreover, let ∆ represent the  classical 

symmetric difference operation, and the symmetric difference complement of the family 𝔙 = {Ci: i ∈ I} such 

that I is an index set, is denoted by 

 

Definition 8. Let ℑG and ℘G be two 𝒮𝒮s. Then, the soft symmetric difference complement-union product 

ℑG⨂s′/u℘G is defined by  

for all x ∈ G. 

Note 1: the soft symmetric difference complement-union product is well-defined in SG(U). In fact, let ℑG,

℘G, 𝓂G, 𝓀G ∈  SG(U) such that (ℑG, ℘G) = (𝓂G, 𝓀G). Then, ℑG = 𝓂G and ℘G = 𝓀G, implying that ℑG(x) =

𝓂G(x) and ℘G(x) = 𝓀G(x), for all x ∈ G. Thereby, for all x ∈ G, 

 

 

Hence, 

 

Example 1. Consider the group G = {ℴ, ρ} with the following operation: 

∙ ℴ ρ 

ℴ ℴ ρ 

ρ ρ ℴ 

 

Let ℑG and ℘G be two 𝒮𝒮s over U = D2 = {< x, y >:  x
2 = y2 = e, xy = yx} = {e, x, y, yx} as follows: 

ℑG = {(ℴ, {yx}), (ρ, {e, x})} and ℘G = {(ℴ, {e, y, yx}), (ρ, {e, x})}. 

Since ℴ = ℴℴ = ρρ, (ℑG⨂s′/u℘G)(ℴ) = ((ℑG (ℴ) ∪ ℘G(ℴ))∆(ℑG (ρ) ∪ ℘G(ρ)))
′

= {e}, and since ρ = ℴρ =

ρℴ, (ℑG⨂s′/u℘G)(ρ) =  ((ℑG (ℴ) ∪ ℘G(ρ))∆(ℑG (ρ) ∪ ℘G(ℴ)))
′

= {e, x, yx} is obtained. Hence,  

ℑG⨂s′/u℘G = {(ℴ, {e}), (ρ, {e, x, yx})}. 

Proposition 1. The set SG(U) is closed under the soft symmetric difference complement-union product. That 

is, if ℑG and ℘G are two 𝒮𝒮s, then so is ℑG⨂s′/u℘G. 

Proof: it is obvious that the soft symmetric difference complement-union product is a binary operation in 

SG(U). Thereby, SG(U) is closed under the soft symmetric difference complement-union product. 

Proposition 2. The soft symmetric difference complement-union product is associative in SG(U). 

Proof: let ℑG, ℘G, and ℷG be three 𝒮𝒮s. Then, for all x ∈ G, 

∐𝔙=∐Ci
i∈I

= (C1∆C2∆…∆Cn)
′.  

(ℑG⨂s′/u℘G)(x) = ∐(ℑG (y) ∪ ℘G(𝓏))

x=y𝓏

,    y, 𝓏 ∈ G,  

(ℑG⨂s′/u℘G)(x) = ∐(ℑG (y) ∪ ℘G(𝓏))

x=y𝓏

= ∐(𝓂G (y) ∪ 𝓀G(𝓏)) = (𝓂G⨂s′/u𝓀G)(x).

x=y𝓏

  

ℑG⨂s′/u℘G = 𝓂G⨂s′/u𝓀G.  
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Thereby, ℑG⨂s′/u(℘G⨂s′/uℷG) = (ℑG⨂s′/u℘G)⨂s′/uℷG. 

Example 2. Consider the group G and the 𝒮𝒮s ℑG and ℘G in Example 1. Let ℷG be an 𝒮𝒮 over U = {e, x, y, yx} 

such that ℷG = {(ℴ, {e}), (ρ, {x, y})}. Since ℑG⨂s′/u℘G = {(ℴ, {e}), (ρ, {e, x, yx})}, then  

(ℑG⨂s′/u℘G)⨂s′/uℷG = {(ℴ, {e}), (ρ, {e, x})}. Moreover, since ℘G⨂s′/uℷG = {(ℴ, {e, y}), (ρ, {e, x})}, then 

ℑG⨂s′/u(℘G⨂s′/uℷG) = {(ℴ, {e}), (ρ, {e, x})}. Thereby, (ℑG⨂s′/u℘G)⨂s′/uℷG = ℑG⨂s′/u(℘G⨂s′/uℷG).   

Proposition 3. The soft symmetric difference complement-union product is not commutative in SG(U). 

However, if G is an abelian group, then the soft symmetric difference complement-union product is 

commutative in SG(U). 

Proof: let ℑG and ℘G be two 𝒮𝒮s and G be an abelian group. Then, for all x ∈ G, 

implying that ℑG⨂s′/u℘G = ℘G⨂s′/uℑG. 

Proposition 4. The soft symmetric difference complement-union product is not idempotent in SG(U). 

Proof: consider the 𝒮𝒮 ℑG in Example 1.  

Then,  ℑG⨂s′/uℑG = {(ℴ, {y}), (ρ, U)}, implying that ℑG⨂s′/uℑG ≠ ℑG.  

Theorem 1. (SG(U),⨂s′/u) is a noncommutative semigroup. If G is abelian, then (SG(U),⨂s′/u) is a 

commutative semigroup. 

Proof: the proof is followed by Propositions 1-4.  

Proposition 5. Let ℑG be a constant 𝒮𝒮. Then, 

I. ℑG⨂s′/uℑG = ℑG 
c, where |G| = 𝓇 and 𝓇 is a positive odd integer. 

II. ℑG⨂s′/uℑG = UG, where |G| = 𝓇 and 𝓇 is a positive even integer. 

Proof: let ℑG be a constant 𝒮𝒮 such that, for all x ∈ G, ℑG (x) = A, where A is a fixed set.  

ℑG⨂s′/u(℘G⨂s′/uℷG)(x)  = ∐ (ℑG (y) ∪ (℘G⨂s′/uℷG)(𝓏))

x=y𝓏

  

 = ∐ (ℑG (y) ∪ (∐ (℘G(m) ∪ ℷG(n))

𝓏=mn

))

x=y𝓏

  

    = ∐ (ℑG (y) ∪ (℘G(m) ∪ ℷG(n)))

x=y(mn)

  

 = ∐ ((ℑG (y) ∪ ℘G(m)) ∪ ℷG(n))

x=(ym)n

  

   = ∐ ((∐ (ℑG (y) ∪ ℘G(m))

a=ym

) ∪ ℷG(n))

x=an

  

  = ∐ ((ℑG ⨂s′/u℘G)(a) ∪ ℷG(n))

x=an

  

  = (ℑG⨂s′/u℘G)⨂s′/uℷG(x).  

(ℑG⨂s′/u℘G)(x) = ∐(ℑG (y) ∪ ℘G(𝓏))

x=y𝓏

= ∐(℘G(𝓏) ∪ ℑG (y))

x=𝓏y

 = (℘G⨂s′/uℑG)(x),  
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  I. Let |G| = 𝓇, where 𝓇 is a positive odd integer. Then, for all x ∈ G,  

Thereby, ℑG⨂s′/uℑG = ℑG
c.  

II. Let |G| = 𝓇, where 𝓇 is a positive even integer. Then, for all x ∈ G,  

Thereby, ℑG⨂s′/uℑG = UG.  

Remark 1. Let SG
∗(U) be the collection of all constant 𝒮𝒮s. Then, the soft symmetric difference complement-

union product is not idempotent in SG
∗(U) either. 

Proposition 6. Let ℑG be an 𝒮𝒮. Then,  

I. ℑG⨂s′/uUG = UG⨂s′/uℑG = ∅G, where |G| = 𝓇 and 𝓇 is a positive odd integer. 

II. ℑG⨂s′/uUG = UG⨂s′/uℑG = UG , where |G| = 𝓇 and 𝓇 is a positive even integer. 

Proof: let ℑG be an 𝒮𝒮.  

I. Let x ∈ G and |G| = 𝓇, where 𝓇 is a positive odd integer. Then, for all x ∈ G, 

 

Thus, ℑG⨂s′/uUG = ∅G. Similarly, for all x ∈ G, 

Thus, UG⨂s′/uℑG = ∅G. 

II. Let x ∈ G and |G| = 𝓇, where 𝓇 is a positive even integer. Then, for all x ∈ G, 

 

Thus, ℑG⨂s′/uUG = UG. Similarly, for all x ∈ G, 

Thus, UG⨂s′/uℑG = UG. 

Remark 2. UG is the absorbing element of the soft symmetric difference complement-union product in SG(U), 

where |G| = 𝓇 and 𝓇 is a positive even integer.  

Proposition 7. Let ℑG be a constant 𝒮𝒮. Then, 

I. ∅G⨂s′/uℑG = ℑG⨂s′/u∅G = ℑG 
c, where |G| = 𝓇 and 𝓇 is a positive odd integer.  

II. ∅G⨂s′/uℑG = ℑG⨂s′/u∅G = UG, where |G| = 𝓇 and 𝓇 is a positive even integer. 

Proof: let ℑG be a constant 𝒮𝒮 such that, for all x ∈ G, ℑG (x) = A, where A is a fixed set. 

(ℑG⨂s′/uℑG)(x) = ∐(ℑG(y) ∪ ℑG (𝓏))

x=y𝓏

= (A∆A∆…∆A⏟      )
′

𝓇 times A,where 𝓇 is even

= A′ = ℑG
c(x).  

(ℑG⨂s′/uℑG)(x) = ∐(ℑG(y) ∪ ℑG (𝓏))

x=y𝓏

= (A∆A∆…∆A⏟      )
′

𝓇 times A,where 𝓇 is even

= ∅′ = UG (x).  

(ℑG ⨂s′/uUG)(x) = ∐(ℑG(y) ∪ UG (𝓏))

x=y𝓏

= ∐(ℑG(y) ∪ U)

x=y𝓏

= ∅G(x).  

(UG⨂s′/uℑG)(x) = ∐(UG(y) ∪ ℑG(𝓏))

x=y𝓏

= ∐(U ∪ ℑG(𝓏))

x=y𝓏

= ∅G(x).  

(ℑG ⨂s′/uUG)(x) = ∐(ℑG(y) ∪ UG (𝓏))

x=y𝓏

= ∐(ℑG(y) ∪ U)

x=y𝓏

= UG(x).  

(UG⨂s′/uℑG)(x) = ∐(UG(y) ∪ ℑG(𝓏))

x=y𝓏

= ∐(U ∪ ℑG(𝓏))

x=y𝓏

= UG(x).  
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  I. Suppose that |G| = 𝓇, where 𝓇 is a positive odd integer. Then, for all x ∈ G,  

Thereby, ∅G⨂s′/uℑG = ℑG 
c. Similarly, for all x ∈ G, 

Thereby, ℑG⨂s′/u∅G = ℑG 
c. 

II. Suppose that |G| = 𝓇, where 𝓇 is a positive even integer. Then, for all x ∈ G,  

Thereby, ∅G⨂s′/uℑG = UG. Similarly, for all x ∈ G, 

 

 

Thereby, ℑG⨂s′/u∅G = UG. 

Proposition 8. Let ℑG be a constant 𝒮𝒮. Then, 

I. ℑG
c⨂s′/uℑG = ℑG⨂s′/uℑG

c = ∅G, where |G| = 𝓇 and 𝓇 is a positive odd integer.  

II. ℑG
c⨂s′/uℑG = ℑG⨂s′/uℑG

c = UG, where |G| = 𝓇 and 𝓇 is a positive even integer. 

Proof: let ℑG be a constant 𝒮𝒮 such that, for all x ∈ G, ℑG (x) = A, where A is a fixed set. 

I. Let  |G| = 𝓇, where 𝓇 is a positive odd integer. Then, for all x ∈ G,  

Thereby, ℑG
c⨂s′/uℑG = ∅G. Similarly, for all x ∈ G, 

Thereby, ℑG⨂s′/uℑG
c = ∅G. 

II. Let  |G| = 𝓇, where 𝓇 is a positive even integer. Then, for all x ∈ G,  

Thereby, ℑG
c⨂s′/uℑG = UG. Similarly, for all x ∈ G, 

Thereby, ℑG⨂s′/uℑG
c = UG. 

Proposition 9. Let ℑG and ℘G be two 𝒮𝒮s such that ℑG ⊆̃S ℘G. Then, 

(∅G⨂s′/uℑG)(x) = ∐(∅G(y) ∪ ℑG (𝓏))

x=y𝓏

= ∐(∅ ∪ ℑG (𝓏))

x=y𝓏

= ℑG 
c(x).  

(ℑG⨂s′/u∅G)(x) = ∐(ℑG (y) ∪ ∅G(𝓏))

x=y𝓏

= ∐(ℑG (y) ∪ ∅)

x=y𝓏

= ℑG 
c(x).  

(∅G⨂s′/uℑG)(x) = ∐(∅G(y) ∪ ℑG (𝓏))

x=y𝓏

= ∐(∅ ∪ ℑG (𝓏))

x=y𝓏

= UG(x).  

(ℑG⨂s′/u∅G)(x) = ∐(ℑG (y) ∪ ∅G(𝓏))

x=y𝓏

= ∐(ℑG (y) ∪ ∅)

x=y𝓏

= UG(x).  

(ℑG
c⨂s′/uℑG)(x) = ∐(ℑG

c(y) ∪ ℑG (𝓏))

x=y𝓏

= ∅G(x).  

(ℑG⨂s′/uℑG
c)(x) = ∐(ℑG (y) ∪ ℑG

c(𝓏))

x=y𝓏

= ∅G(x).  

(ℑG
c⨂s′/uℑG)(x) = ∐(ℑG

c(y) ∪ ℑG (𝓏))

x=y𝓏

= UG(x).  

(ℑG⨂s′/uℑG
c)(x) = ∐(ℑG (y) ∪ ℑG

c(𝓏))

x=y𝓏

= UG(x).  
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  I. ℑG⨂s′/u℘G = ℘G⨂s′/uℑG = ℘G
c, where |G| = 𝓇 and 𝓇 is a positive odd integer. 

II. ℑG⨂s′/u℘G = ℘G⨂s′/uℑG = UG, where |G| = 𝓇 and 𝓇 is a positive even integer. 

Proof: let ℑG and ℘G be two 𝒮𝒮s and ℑG ⊆̃S ℘G. Then, for all x ∈ G, ℑG(x) = A,  ℘G(x) = B, where A and B 

are two fixed sets and A ⊆ B. 

I. Let  |G| = 𝓇, where 𝓇 is a positive odd integer. Then, for all x ∈ G, 

Thereby, ℑG⨂s′/u℘G = ℘G
c. Similarly, for all x ∈ G, 

Thereby, ℘G⨂s′/uℑG = ℘G
c. 

II. Let  |G| = 𝓇, where 𝓇 is a positive even integer. Then, for all x ∈ G, 

Thereby, ℑG⨂s′/u℘G = UG. Similarly, for all x ∈ G, 

Thereby, ℘G⨂s′/uℑG = UG. 

Proposition 10. Let ℑG and ℘G be two 𝒮𝒮s such that  ℑG
c ⊆̃A ℘G. Then,   

I. ℑG⨂s′/u℘G = ∅G, where |G| = 𝓇 and 𝓇 is a positive odd integer. 

II. ℑG⨂s′/u℘G = UG, where |G| = 𝓇 and 𝓇 is a positive even integer. 

Proof: let ℑG and ℘G be two 𝒮𝒮s and ℑG
c ⊆̃A ℘G. Then, ℑG

c(y) ⊆ ℘G(𝓏), for each y, 𝓏 ∈ G.  

I. Let  |G| = 𝓇, where 𝓇 is a positive odd integer. Then, for all x ∈ G, 

Thereby, ℑG⨂s′/u℘G = ∅G.  

II. Let  |G| = 𝓇, where 𝓇 is a positive even integer. Then, for all x ∈ G, 

Thereby, ℑG⨂s′/u℘G = UG.  Here, note that if A′ ⊆ B, then A′ ∩ B′ = (A ∪ B)′ = ∅. 

Remark 3. Let ℑG and ℘G be two 𝒮𝒮s such that  ℑG
c ⊆̃S ℘G. Then,   

I. ℑG⨂s′/u℘G = ∅G, where |G| = 𝓇 and 𝓇 is a positive odd integer. 

II. ℑG⨂s′/u℘G = UG, where |G| = 𝓇 and 𝓇 is a positive even integer. 

Proof: the proof is similar to the proof of Proposition 10. 

(ℑG⨂s′/u℘G)(x) = ∐(ℑG(y) ∪ ℘G(𝓏))

x=y𝓏

= ℘G
c(x).  

(℘G⨂s′/uℑG)(x) = ∐(℘G(y) ∪ ℑG(𝓏))

x=y𝓏

= ℘G
c(x).  

(ℑG⨂s′/u℘G)(x) = ∐(ℑG(y) ∪ ℘G(𝓏))

x=y𝓏

= UG(x).  

(℘G⨂s′/uℑG)(x) = ∐(℘G(y) ∪ ℑG(𝓏))

x=y𝓏

= UG(x).  

(ℑG⨂s′/u℘G)(x) = ∐(ℑG(y) ∪ ℘G(𝓏))

x=y𝓏

= ∅G(x).  

(ℑG⨂s′/u℘G)(x) = ∐(ℑG(y) ∪ ℘G(𝓏))

x=y𝓏

= UG(x).  
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Proposition 11. Let ℑG and ℘G be two 𝒮𝒮s. Then,(ℑG⨂s′/u℘G)

c
= ℑG⨂s/u℘G. 

Proof: let ℑG and ℘G be two 𝒮𝒮s. Then, for all x ∈ G,   

Thereby, (ℑG⨂s′/u℘G)
c
= ℑG⨂s/u℘G. Here note that, in classical set theory,  A′∆B′ = A∆B, where A and B 

are fixed sets. 

4|Conclusion 

This research introduces the soft symmetric difference complement-union product, a novel binary operation 

on soft sets that is influenced by group-theoretic structures. The operation is examined within a 

comprehensive algebraic framework, emphasizing its connection to generalized soft equality and its role 

across various levels of soft subsethood. A comparative analysis highlights the operation's expressive potential 

and algebraic consistency in relation to existing soft set operations. The study also explores its relationship 

with key concepts such as null and absolute soft sets, as well as its coherence within group-parameterized 

binary operations. Key algebraic properties—like closure, associativity, commutativity, and idempotency—

are thoroughly validated, including conditions concerning identity, inverse, and absorbing elements. It is 

obtained that the proposed product is a noncommutative semigroup in the collection of soft sets with a fixed 

parameter set. The resulting structure demonstrates strong internal consistency, extending traditional algebraic 

concepts into the domain of soft sets. Ultimately, this operation lays the groundwork for a generalized soft 

group theory, where soft sets indexed by group-structured parameters exhibit group-like behavior through 

abstract soft operations. As a result, this work not only strengthens the theoretical basis of soft set theory but 

also broadens its potential applications in areas such as algebraic modeling and decision-making under 

uncertainty. 
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